Bridging Industry 4.0 and Circular Economy: A new research agenda for Finland?

Mikkel Stein Knudsen and Jari Kaivo-oja:

Emerging academic research concerns how the principles, practices, and enabling technologies of Industry 4.0 might unlock the potentials of Circular Economy (CE) and sustainable manufacturing (Jabbour et al., 2018; Stock et al., 2018). Digitalisation (Ellen Macarthur Foundation, 2016;  Antikainen et al., 2018) and the use of Big Data (Hazen et al., 2016; Nobre & Tavares, 2017; Jabbour et al., 2017) are seen as key enablers for increased sustainability and for the implementation of a circular economy. Technology is also a necessary enabler of a move towards Product-Service Systems (Tukker, 2015; Antikainen et al., 2018). As Moreno & Charnley (2016) notes the fundamental drivers behind Circular Economy and Industry 4.0 overlap. It is an obvious fact that the combination of Circular Economy and Industry 4.0 leads us towards the Green Economy vision.

However, research output integrating the two important fields is still very scarce and plenty of unexplored research areas remain. Tseng et al. (2018)  deliver a telling example of the hitherto missing research: While separate queries in Scopus using “Industry 4.0” and “Circular Economy” yields 4060 and 2452 results respectively, a combined search using both “Industry 4.0” and “Circular Economy” as keywords provide only three results (all published in 2017). Combined searches for “Circular Economy” and ´digit*´ (i.e. digital, digitalisation etc.) provide similarly limited results (Antikainen et al., 2018). Stock et al. (2018) make the point even broader, as they conclude, there are rarely any sustainability assessments for Industry 4.0 available”. All transition paths are not automatically leading us to sustainable development and greener infrastructures, which typically mean sustainable land use, widely adopted green consumption lifestyles and broad industrial use of nature saving technologies.

If we – ‘we’ as researchers, as Finland, as the international society – should harness the potential synergies of these two emerging business systems, and strive for a transition to a greener economy, there is therefore plenty of work ahead. It seems likely though that solving this integration puzzle, however, will also bring major (business) opportunities and a competitive advantage for the future.

Industry 4.0 and a new sustainability optimism?

Stock et al. (2018) note that most literature linking sustainability and Industry 4.0 do so with a basic tenor of optimism. Opportunities for increased sustainability by using novel technological opportunities in combinations with new business models take centre stage. Improved traceability of smart products through the entire supply chain and during the products’ use phase allow manufacturers continuously to optimize the performance of both product and production, which may deliver a more efficient use of resources. For industrial practitioners sustainability, environmental, and social opportunities is also a noted driver for implementation of Industry 4.0 (Müller et al., 2018). Highlighting what is at stake for a green economy transition, Erol (2016) even asks thought-provokingly if Industry 4.0 is the very last chance for a truly sustainable production?

Notably, the United Nations also talks of ‘Big Data for Sustainable Development’, and how “new sources of data, new technologies, and new analytical approaches, if applied responsively, can enable more agile, efficient and evidence-based decision-making and can better measure progress on the Sustainable Development Goals (SDGs) in a way that is both inclusive and fair”.

Source: United Nations

While this ‘optimistic’ strand of research is obviously both highly relevant and highly inspiring, increased technology uptake could also happen unsustainably. Rise of enabling technologies behind Industry 4.0 is mirrored by rising demands for scarce resources such as (certain) metals and also highly dependent on increasing consumption of energy.  We can probably sum things up this way, “Industry 4.0 and its related technologies may facilitate more sustainable production, but sustainability is not an endogenous feature of Industry 4.0.”

Industry 4.0 and its related technologies may facilitate more sustainable production, but sustainability is not an endogenous feature of Industry 4.0.

Dual challenges: A sustainable Industry 4.0 and Industry 4.0 for sustainability

In the context of sustainability, new technologies might indeed come Janus-faced. Additive manufacturing and 3D printing disrupts supply chains and reduces the need for large inventories, such as in the aero-industry (cf. Khajarvi et al., 2014). Instead, parts are manufactured (printed) at the time of actual demand, increasing efficiency and reducing waste. On the other hand, beyond specific supply chains, when every part and product can be produced anywhere and at any given time, it takes little fantasy to imagine marked reductions of product lifecycles and overall increases in consumption. Additive manufacturing is therefore not a guarantee for more sustainable production and consumption (cf. review by Kellens et al., 2017 & Holmström & Gutowski, 2017).  On average, production processes using additive manufacturing even results in a higher environmental impact than conventional production processes, although this could be compensated by functional improvements during the use stage of AM manufactured parts (Kellens et al., 2017). In her highly cited literature review, Aalto University’s Cindy Kohtala (2015) concluded “Distributed production holds promise of greater environmental sustainability, but it is not a given that it will be a new, clearly cleaner production paradigm.”

Figure 1. Environmental threats and benefits of distributed production (e.g. decentralized 3D-printing). Source: Kohtala, 2015.

Interconnectivity and continuous massive amounts of data also come with an environmental price: In Denmark for example, the government expects that international data centres will take up 20% of the current national electricity consumption by 2030. The global electricity consumption for mining cryptocurrency using Blockchain-technology already today exceeds the current national electricity consumption of Finland significantly, according to consumption estimates in a recent issue of The Economist (2018).

The challenge then is (simultaneously!) to build a sustainable Industry 4.0 and to use Industry 4.0 to build sustainability. In other words, society must: (1) Ensure to the widest extent possible sustainability and circular economy as a feature in the ecosystem of Industry 4.0-enabling technologies, (2) Explore and exploit the enabling potential of Industry 4.0 for building more sustainable business models and production systems. These challenges are illustrated in figure 2.

Figure 2. Circular Economy for Industry 4.0 and Industry 4.0 for Circular Economy.

A new research agenda for Finland?

Finland is well poised to be an international leader in the bridging of Industry 4.0 and Circular Economy. Finland is already among the global drivers of Circular Economy. It is a stated objective of the current government to make Finland a “forerunner in the circular economy by 2025”. In addition, Finland is one of the most digitalised countries of the world, and a world-leader in many areas related to Industry 4.0. Our current project – Manufacturing 4.0 – aims at translating this into a success story for the general manufacturing industry of Finland.

It would seem natural then that Finland should also take the lead in bridging Industry 4.0 with Circular Economy. This could secure long-term competitive advantages for Finnish industry and simultaneously improve the local and global environment.

This new research agenda of bridging Industry 4.0 with Circular Economy would not start from scratch, but as the recent literature shows, there are still many research areas to explore. For us, a new research agenda could for example further address some of these key questions:

The countries, which are able to integrate Industry 4.0 approach to the principles of the Circular Economy, are the probably forerunners of Industry 4.0 revolution. However, as we can see above, the list of challenges in Industry 4.0 transformation is not short.  We know also that many economic activities in many countries are stuck in Industry 1.0-3.0 phases. This means that the Industry 4.0 approach with the Circular Economy approach does not solve all the sustainability problems of globalized world economy. However, remaining to Industry 1.0-3.0 models can also be a highly risky “project” for the long-run sustainability of world economy. Greener economic structures can be developed with Industry 4.0 technologies. We know that Industry 1.0-3.0 stages of development have not yet led us to needed sustainability levels, because climate change and other environmental problems are still far from solved.

In Fig 3 we present a scenario roadmap of Industry 4.0 and circular economy development. This scenario roadmap shows that in the process of Industry 4.0 development, it is not enough to change Industry 4.0 structures to meet the deep requirements of circular economy.

Figure 3. Scenario roadmap of Industry 4.0 and the Circular Economy.

Previous old phases of Industry 1.0, Industry 2.0 and Industry 3.0 require attention concerning the adoption of environmental principles of the Circular Economy. We underline that preconditions of Industry 1.0-3.0 are really pre-conditions for Industry 4.0, but also that the simultaneous transformation towards Industry 4.0 and Circular Economy requires both attention and multiple testing phases. From this perspective we can say: “Let´s try it – let´s pilot it”.


Mikkel Stein Knudsen
Project Researcher, Finland Futures Research Centre, Turku School of Economics, University of Turku

Jari Kaivo-oja
Research Director, Adjunct Professor, Dr, Finland Futures Research Centre, Turku School of Economics, University of Turku

Note: Authors thank for Try Out! and Manufacturing 4.0 projects for financial support.




Miltä tulevaisuudet tuntuvat? Ajatuksia tulevaisuudentutkimuksen estetiikasta

Matti Minkkinen

Luin hiljattain Esther Eidinow’n ja Rafael Ramirezin artikkelin tarinankerronnan estetiikasta ja tulevaisuuskuvien uskottavuudesta.[1] Artikkeli sai minut pohtimaan estetiikan merkitystä tulevaisuudentutkimuksessa yleisemmin. Kansainväliseen maisteriohjelmaamme kuuluu kurssi tulevaisuudentutkimuksen etiikasta, ja etiikan tärkeydestä on tällä alalla laaja yhteisymmärrys. Entä estetiikka?

Eidinow ja Ramirez esittävät, että tarinan estetiikka, eli se miten kauniilta, sopivalta, elegantilta (tai vaihtoehtoisesti rumalta) tarina tuntuu, on ratkaisevassa roolissa tarinan uskottavuuden luomisessa. Paino on sanalla tuntuu: estetiikassa on kyse enemmän subjektiivisesta kokemuksesta kuin järkeilystä. Uskottavuus puolestaan luo tarinalle vaikuttavuutta, kun toimijat vakuuttuvat ja alkavat toimia tietyn tulevaisuuskuvan eteen (tai sitä vastaan). Uskottavuus (plausibility) on tärkeä erottaa todennäköisyydestä (probability) ja mahdollisuudesta (possibility). Uskottavuuden luomisessa on kyse sosiaalisesta prosessista, jossa pyrimme vakuuttamaan muut tulevaisuuskuvan uskottavuudesta ja toivottavasti annamme vastavuoroisesti muille mahdollisuuden vakuuttaa meidät. Todennäköisyys ja mahdollisuus ovat pidemmälle meneviä väitteitä siitä, mitä oikeasti voisi tapahtua riippumatta ihmisten uskomuksista.[2] Eidinow’n ja Ramirezin tulevaisuuden estetiikan ‘kaava’ menee suurin piirtein näin: tarinan estetiikka → uskottavuus → vaikuttavuus. Looginen johtopäätös on, että kiinnittämällä huomiota tarinan esteettisiin ominaisuuksiin sille saadaan lisää vaikuttavuutta ja näin voidaan edistää tärkeiksi koettuja asioita.

Sivuhuomiona tässä voidaan huomata selvä ero etiikkaan. Siinä missä esteettisyys koskee tarinan ominaisuuksia ja kokemista, eettinen pohdinta kyseenalaistaa tarkoitusperät, joita tarinalla ajetaan ja tarinan käyttämisen vaikuttamisen keinona. Turun yliopiston yleisen kirjallisuustieteen professori Hanna Meretoja esittää, että kertomukset muokkaavat mahdollisen tajuamme ja voivat olla vaarallisiakin.[3] Etiikka voi usein pikemminkin haastaa tarinoiden esteettisyyttä kuin edistää sitä. Kuten filosofi Sami Pihlström totesi hiljattain Helsingin Sanomille, “moraali ei ole sellainen kiva juttu, josta tulee hyvä olo.”[4]

Tarinoille ja esteettisille mieltymyksille ominaista on, että ne yhdistävät ihmisiä ja ovat jaettuja tietyn kulttuuripiirin sisällä.[5] Kärjistäen useat suomalaiset pitävät muumimukeista ja tietynlaisista tulevaisuuskuvista. Toisaalta esteettiset käsitykset myös muuttuvat ajan myötä ja lienevät kytköksissä yhteiskunnan materiaalisiin tekijöihin kuten elintasoon ja väestöntiheyteen. Jos tilaa yksilöille ei ole, sitä ei välttämättä myöskään kaivata. Saksalainen sosiologi Georg Simmel kirjoitti vuonna 1896 “sosiologisesta estetiikasta”, jonka mukaan yhteiskunnissa on tiettyjä jaettuja esteettisiä käsityksiä esimerkiksi yksilön roolista suhteessa yhteiskuntaan.[6] Saksassa ainakin tuolloin yhteiskunnan sopusointu oli arvossaan, kun taas Britanniassa eksentrisillä yksilöillä eli yhteiskunnasta törröttävillä erikoisilla yksityiskohdilla oli enemmän tilaa.

Tulevaisuudentutkimusta ja ennakointia tekevien tulisi kiinnittää huomiota etenkin kolmeen asiaan tulevaisuuskuvien ja skenaarioiden estetiikassa. Ensinnäkin miten pystymme esittämään sellaisia tulevaisuuskuvia, jotka osuvat kohdeyleisön esteettisiin tuntemuksiin ja todella vaikuttavat heidän ajatteluunsa ja toimintaansa? Toisekseen mikä rooli on tarkoituksellisesti rumilla, epäesteettisillä ja häiritsevillä tulevaisuuskuvilla, jotka aiheuttavat epämiellyttäviä tuntemuksia, ja miten tällaisia tulevaisuuskuvia voidaan esittää aiheuttamatta välitöntä hylkimisreaktiota? Kolmas asia on estetiikan ja etiikan suhde. Millä edellytyksillä voimme käyttää tulevaisuustarinoita vaikuttamisen keinona eettisesti hyväksyttävästi?

Matti Minkkinen
FM, projektitutkija
Tulevaisuuden tutkimuskeskus, Turun yliopisto

– – – –

[1] Eidinow, E., & Ramirez, R. (2016). The aesthetics of story-telling as a technology of the plausible. Futures, 84, 43–49.

[2] van der Helm, R. (2006). Towards a clarification of probability, possibility and plausibility: how semantics could help futures practice to improve. Foresight, 8(3), 17–27.



[5] Eidinow & Ramirez.

[6] Georg Simmel on-line & de la Fuente, E. (2008). The Art of Social Forms and the Social Forms of Art: The Sociology-Aesthetics Nexus in Georg Simmel’s Thought. Sociological Theory, 26(4), 344–362.




Are we in the midst of a fourth industrial revolution? New Industry 4.0 insights from future technology analysis professionals

Mikkel Stein Knudsen and Jari Kaivo-oja:

The recent July 2018-issue of the highly influential futures studies journal Technological Forecasting & Social Change contained a special section dedicated to Industry 4.0. The issue is relevant to an increased understanding of the current trends and transformations of the manufacturing sector. Finland Futures Research Centre works with this theme in the project Manufacturing 4.0 supported by Academy of Finland’s Strategic Research Council. Discussion about Industry 4.0 is part of larger technological transformation process (Kaivo-oja et al. 2017). “Industry 4.0” was first coined at the Hannover Fair in 2011, seven years ago. All over the world, the term “Industry 4.0” has drawn great public attention from practitioners, academics, government officials and politicians. Some scientist as Reischauer (2018) see Industry 4.0 as policy-driven discourse to institutionalise particular innovation systems in manufacturing.

For use in the MFG4.0-project, and due to its general relevance, this blog post contains a summarizing review of the TFSC-special issue combined with other recent research on Industry 4.0. We hope this blog will be informative both to those already working with these themes and to those curious about the field. Awareness about Industry 4.0-strategy is an important development driver for both progressive SMEs and large corporations. Discussion in the TFSC Special Issues of Industry 4.0 underlines the idea that Industry 4.0 challenges do not hit only large corporations, and that the role of progressive SMEs and start-ups needs more scientific attention in the global Industry 4.0-process. Orchestration of innovation eco-systems requires broad networks and new dynamic capabilities in organizations.

Compared to previous Industry 1.0-3.0 revolutions Industry 4.0 revolution will include a novel and global dynamic element: The BRICS-countries will be now more active players in Industry 4.0 transformations than these countries were in previous industrial transformations. Especially the role of China in Industry 4.0-era will be a big political and economic issue (see Kaivo-oja & Lauraeus 2017a, 2017b). Industry 1.0 phase was founded on mechanisation, Industry 2.0 phase was based on electricity and Industry 3.0 phase was founded on information technology (IT) to human manufacturing. New Industry 4.0 era is expected to be founded on Cyber-Physical Systems (CPS) and the Internet of Things (IOT). Other key technologies are Cloud computing, Big Data analytics and Extended ICT.

The expected changes will lead to new integrated systems, where sensors, actuators, machines, robots, conveyors, etc. are connected to and exchange information automatically. Factories are expected to become conscious and intelligent enough to predict and maintain the machines and control the production process. Business models of Industry 4.0 imply complete communication network(s) between various companies, factories, suppliers, logistics, resources and customers. This kind of highly integrated and transparent industrial approach probably allows more efficient circular economy in the future (see de Sousa Jabbor 2018).

Both smart production and smart consumption are key benefits of Industry 4.0 approach. Industry 4.0 includes a new research agenda for sustainable business models, business model innovation and re-organization process of old supply chains of companies. Lean Industry 4.0 is expected to be a key challenge for SMEs and corporations. From this technology foresight analysis perspective, the reported technology roadmap in the computer and electronic product manufacturing industry is highly relevant reading for Industry 4.0 policy discussion (Lu & Weng 2018).

The difficult task of defining Industry 4.0

As noted, the term Industry 4.0 was coined in Germany by a government advisory council at the beginning of this decade. This origin does not seem disputed, but otherwise the definition of Industry 4.0 remains up for debate. It is notable, for example, that all articles in the TFSC-special section provide their own slightly different explanations of the term. One article (Sung, 2018) even argues that the inclusion of “4.0” in the umbrella-term refers to the fourth industrial upheaval post-WW2, while others follow the more widely used definition of 4.0 being the fourth industrial age after the age of steam, the age of electricity and the information age (Müller et al., 2018).

While exact definitions differ, common themes in the understanding of Industry 4.0 are easily distinguished. It revolves about new technologies, new digital possibilities, new modes of inter-connectivity etc. Jabbour et al. (2018) captures this by denoting four significant components of Industry 4.0: i. cyber-physical systems, ii. the internet of things, iii. cloud manufacturing, and iv. additive manufacturing. This is very similar to what Xu et al. (2018) recently described as enabling technologies in a comprehensive assessment of Industry 4.0: State of the art and future trends.

Figure 1: ‘Components’ and ‘enabling technologies’ in Industry 4.0.

Adding to the broader understanding of the concept of Industry 4.0, Müller et al. (2018) provide a qualitatively based examination of how key practitioners, representatives of manufacturing SMEs, perceive the term. This pragmatically highlights those elements of particular interest to manufacturing practitioners, and the empirical results reveal three main dimensions of Industry 4.0: (1) High-grade digitization of processes, most notably manufacturing processes, (2) Smart manufacturing through cyber-physical systems resulting in self-controlled production systems, (3) Inter-company connectivity between suppliers and customers within the value chain.

Figure 2: 3 dimensions of Industry 4.0 (adapted from Müller at al., 2018).

We believe these three dimensions would be interesting starting points for creating a refined Maturity Model of organizational Industry 4.0-readiness. This has already been attempted, see e.g. Schumacher et al., 2016, but a new model based on these three empirically backed dimensions might be both simpler and more precise. Müller et al. (2018) do not formalize a new maturity model in their article, but they do provide a four-stage model of manufacturing SMEs ranging from those deliberately not engaged (“we’ve always done things like this”) to full-scale adopters of Industry 4.0 (“we want to be the leader in our industry and can only achieve this through Industry 4.0”). Other identified firm categories were preliminary stage planners (“for us Industry 4.0 us imaginable in the next five to ten years”) and Industry 4.0 users (“more efficient usage of machines while achieving more with less employers”). Motivation level and strategic maturity level to be engaged in Industry 4.0 revolution vary much among German SMEs. Probably, in Finland we could get similar results.

Organizational responses to Industry 4.0

Through their qualitative interviews (with 68 high-level representatives of manufacturing SMEs) Müller et al. (2018) also importantly provides outlines for various strategies for adopting or not adopting elements of Industry 4.0 within business practices. We expect that this theme – identifying and exemplifying organizational Industry 4.0-strategies – will be a key future research topic for business, innovation and organizational research. Finally, the article illustrates dilemmas of smaller suppliers when the value chain become increasingly inter-connected. Increased transparency is not always in the interest of the minor companies, as pointed out by several informants in the study. This view is supported in a recent survey of UK-manufacturers, where, even if 80% of manufacturers believe that new digital technologies will improve the supply chain relationships up and down, several negative responses with fear of “supply chain bullying” can be found (PwC, 2018).

How Industry 4.0-developments affect supply chain relationships and especially affect suppliers might be a particularly pertinent research question in a Finnish context. Three-fourths of Finnish exports are intermediate goods (Ali-Yrkkö, 2017) – a share significantly higher than the EU-average – and changes (positive or negative) to the role of manufacturing supply companies can therefore have effects not only on the individual companies, but perhaps also on the national economy.

Linking Industry 4.0 with the sustainability agenda

Jabbour et al. (2018) examine links between Industry 4.0 and environmentally-sustainable manufacturing. Industry 4.0 and sustainability are argued to be two major trends of, and while they individually cannot be considered revolutionary, together then may “change worldwide production systems forever”. The technological possibilities of Industry 4.0 may help unlock the full potential of environmentally-sustainable manufacturing practices. Whether this will happen, the authors note, depend on eleven distinct critical success factors (CSF) further explained in the article. The CSF’s here are not studied empirically, but they provide research propositions for – as explicitly urged by the authors here – further examination in the synergies between two key societal and manufacturing megatrends. How to best harness these synergies should be of utmost importance to academics, policymakers and practitioners working with sustainable manufacturing and sustainable development, and we will likewise hope that the question of integrating sustainability-dimensions will occupy an important part of the Industry 4.0 research- and implementation agenda. This article together with the highly-cited contribution of Stock & Seliger (2016) provide important background material for this work.

Talkin’ Bout a Revolution?

Like Jabbour et al., Reischauer (2018) and Kim (2018) argue that “Industry 4.0” is not really an industrial revolution. Reischauer argues that, as much as signalling future changes, the particular discourse of “Industry 4.0” serves a policy-driven discourse to institutionalize a distinct now-almost hegemonic idea of innovation systems. Thus, the term itself was developed in the context of a “fluid entanglement of academia, business, and politics”, and the discourse further underpins this entanglement. The discourse hereby both exemplifies and underlines the further need for Triple-Helix Innovation modes (see e.g. Kaivo-oja, 2001, Santonen et al., 2011, Santonen et. al., 2014). It might be illuminating also to see our own MFG4.0 through this critical lens and to remind ourselves that the discourse is neither value- or policy-free.

Kim (2018) puts another critical spin on Industry 4.0. Industry 4.0 is a meso revolution needed by capitalism, because capitalism always needs ever-growing markets, and technology is just one arena for the ever-needed expansion of capitalism. Jumping from this critical view, he goes on to analyse the readiness for this particular meso revolution in South Korea, a topic also explored by Sung (2018). Perhaps surprisingly, both authors conclude that South Korea is a bad position to utilise potential opportunities provided by Industry 4.0. Finland, on the other hand, ranks second only to Singapore in a global competitiveness ranking for the fourth industrial revolution (Sung, 2018). This of course provides some ground for optimism regarding the MFG4.0-project and the general ability of Finland to capture new opportunities and benefits.

Morphological analysis for the future Industry 4.0 transformations

The Special Issue of TFSC also includes also an important methodological paper of Kwon et al. (2018). As we know the generation of new and creative ideas is vital to stimulating innovation, and morphological analysis is one appropriate innovation management method given its objective, impersonal, and systematic nature. In the Big Data-era, we can develop Industry 4.0 strategy on the basis of Big Data files, and the systematic structuring of data becomes vital for success. This methodological case study in the TFSC Special Issue focuses on Wikipedia’s case-specific characteristics using the online database for the development of morphological matrix, which incorporates the data on table of contents, hyperlinks, and categories. This provides interesting results. The feasibility is demonstrated through a case study of drone technology, and the validity and effectiveness was shown based on a comparative analysis with a conventional discussion-based approach. This methodological paper is a milestone study and requires our full scientific attention.

Japanese Industry 4.0 strategy?

Also in the Special Issue, Luo and Triulzi (2018) provide interesting insights about Japanese approach to Industry 4.0. They point out that the architecture of a firm’s network of transactions in its surrounding business ecosystem may affect its innovation performance.  A business ecosystem as a transaction network among firms has been a key issue for successful industrial cooperation in Japan.

The empirical results of Japanese study indicate that a firm’s participation in inter-firm transaction cycles, instead of sequential transactional relationships, is positively and significantly associated with its innovation performance for vertically integrated firms. Within cycles, vertically integrated firms have better innovation performances than vertically specialized firms. Vertically integrated firms that participate in cycles have the best innovation performances in the Japanese electronics sector. This empirical finding can be very relevant also for European firms and companies. The authors also underline that the organizations focusing on quality improvements and production efficiency improvements can be different organizations. Specialization in these fields may be a critical success factor in a national Industry 4.0 strategy. Only in few special cases, organizations are able to integrate these critical industrial functions in one unified organization. We can conclude that Industry 4.0 transformations need more discussions about Japanese historical Industry 1.0-4.0 know-how.

Industry 4.0 in Finland

Discussion about Industry 4.0 will surely continue. Manufacturing 4.0 consortium will contribute to this discussion in various ways and via various channels.

In April 2018, the Manufacturing 4.0 consortium provided the first ‘situation report’ for the Strategic Research Council. The report is (in Finnish).

Link to references

Mikkel Stein Knudsen
Project Researcher, Finland Futures Research Centre, Turku School of Economics, University of Turku

Jari Kaivo-oja
Research Director, Adjunct Professor, Dr, Finland Futures Research Centre, Turku School of Economics, University of Turku




From schools to peer-to-peer -learning. How to live in Learning Intensive Society?

Laura Pouru & Markku Wilenius:

About 40 representatives from academia, education administration and schools gathered to a morning session on the Future of Futures Literacy in Finland organized by UNESCO, Finnish National Board of Education and Finland Futures Research Centre on June 15th, 2018. The session explored futures of learning and ways of bringing futures literacy into the curriculum of Finnish education system.

What is Futures Literacy and Futures Literacy Laboratory?

Futures literacy refers to individual’s capability to use the future in the present. This is an increasingly valuable skill for people living in our complex and dynamic world. The capacity to observe and reflect upon how oneself and others “use the future” in the present can unlock great potentials for individuals, organizations, and society.

Futures literacy laboratory (FLL) is a learning experiment that aims at making participants more aware of their own anticipatory assumptions and their ways of using the future. Therefore the main goal is not to produce new knowledge to decision-making, but to inspire participants to become more conscious about the future. However, as the participants are guided through the Lab and offered kind of ‘sandbox’ where to play with new framings and anticipatory assumptions about the future, interesting new ideas are often produced as a by-product. In this blog post we are introducing some of the interesting themes that were brought up at the FLL sandbox, where the play material consisted of futures of futures literacy and learning in Finland.

Peer-to-peer learning in local communities

Firstly, the importance of local communities was strongly brought up in the discussions. Local communities were seen as the core unit where people live, communicate and learn. What are these communities and how are they formed, was a question raised during the lab. Are they “bubbles” of like-minded people or more heterogeneous fractals? Inhabitants of these local communities have well-being in physical, emotional and spiritual sense as their life’s core value. This means that, for example, “work is organized for life” instead of “life being organized for work”.

The local communities were also seen as the core setting where learning takes place, not anymore so much in schools but more in peer-to-peer networks. People can learn, for example, in heterarchical mentor-mentor –relationships, where both parties learn equally from each other instead of more traditional mentor-actor or master-apprentice relationships.

It was also noted that this kind of learning intensive society requires new kind of agency from the learners; everyone is responsible for their own learning and individual development. The question “Who owns the learning?” was emphasized in a sense that motivation and ownership of learning should always originate from inside the learner instead of outside from the teacher or other external motivations. In many visions school buildings had disappeared but teachers had not. In the learning intensive society teachers act as learning facilitators supporting individual learning. Teachers’ role as change agents was also seen crucial in the process of transforming our current learning system towards this new learning intensive society.

Future of futures literacy?

How about the future of futures literacy? Some participants believed that futures literacy will still be too abstract to integrate it to the national education curriculum, while others were optimistic that futures literacy would become a basic skill for everyone. The main concern seemed to be polarization: what if futures literacy becomes a skill that helps those who have it to succeed and those who don’t have it to be condemned to be less successful.

What we conclude is that if we are heading towards this kind of learning intensive society, where we own the responsibility of our own learning, futures literacy becomes even more essential. In this peer-to-peer-learning society futures literacy is like a compass that helps us to navigate and decide the direction we should focus our learning next. This is why we need to start building our individual, organizational and societal futures literacy skills today. This is something in which Finland can be a global forerunner, because we already have exceptionally strong tradition and institutions of futures studies and foresight in our country. Now we just need to mobilize this futures know-how and make it our shared capacity.

In practice we can start mobilizing our futures know-how by embedding futures literacy in all the levels of our current education system. Futures literacy can be taught in schools as phenomenon-based multidisciplinary courses, or elements of it can be integrated in the existing study topics, such as history, geography or the language studies. This way we can make “futures” more approachable as a topic that everybody knows is important but few have capacity to comprehend. Thinking of Finland, futures literacy could indeed become the new competitive edge for our learning institutions.


Futures literacy refers to a space of potential freedom inside our minds and hearts. Indeed, we can decide what kind of assumptions of the future we hold. Our hopes and our fears about future are very important vehicles in our journey towards future. Moreover, it is that mental space that creates opportunities for personal development and transformation. Simply put, our assumptions about future are the ways future exists in the present.

For the young people in particular, going through their formative years, it is critically important that they learn to discover their futures through their assumptions. To build a positive and constructive vision of future on personal, local and global level is by far the best asset they can have in our complex and fast changing world. By facilitating these discoveries we can make a great contribution to their lives. This is what futures literacy is all about.

The FLL was led by Head of Foresight Riel Miller from UNESCO and UNESCO Chair Markku Wilenius from Finland Futures Research Centre. Laura Pouru, Nicolas Balcom Raleigh, Ellinoora Leino-Richert, Marianna B. Ferreira-Aulu and Amos Taylor from the Finland Futures Research Centre organized and facilitated the group work sessions during the Lab. The session was organized as part of the research, development and education agenda of the UNESCO Chair in Learning Society & Futures of Education at the University of Turku.

Interested in Futures Literacy and Futures Literacy Laboratory as a learning method? See these:

Balcom Raleigh, N.A. – Pouru, L. – Leino-Richert, E. – Parkkinen, M. – Wilenus, M. (2018) Futures Literacy Lab for education – Imagining Complex Futures of Human Settlements at Finland Futures Academy Summer School 2017. FFRC eBOOK 3/2018.

Miller, R. (ed.) (2018) Transforming the Future: Anticipation in the 21st Century. Routledge. 

Laura Pouru
Project Manager, Finland Futures Research Centre, University of Turku

Markku Wilenius
Professor, UNESCO Chair, Finland Futures Research Centre, University of Turku

From the left: Ellinoora Leino-Richert, Amos Taylor, Laura Pouru, Riel Miller, Marianna B. Ferreira-Aulu, Markku Wilenius and Nicolas Balcom Raleigh. (photo: Katariina Heikkilä)



Cobalt: What the price of a mineral can make us inquire about the future?

Mikkel Stein Knudsen & Jari Kaivo-oja:

How can strategic foresight help prepare Finland for a healthy economic future? One element is to detect market movements, which, now and down the line, might affect Finland’s economy and manufacturing. The cobalt market is one such market.

The price of cobalt is surging. The price of the mineral has more than quadrupled over the past 26 months from a historic low of 21,750 $/ton in February 2016 to an all time high of 95,250 $/ton in March 2018. On Friday April 13 2018, trading closed at 92,000 $/ton.

Fig. 1. Five years trading prices of Cobalt.  

This price development is remarkable for a number of reasons, and, as this blog post aims to show, it provides us with important questions and links to the global sustainable energy transition, to a healthy and competitive Finnish economy, and to possible geopolitical challenges of the future. We should pay more strategic attention to the monitoring of the global economy from the perspective of the Finnish manufacturing base. In the future we need strategic value mapping systems, of manufacturing, which include (1) independent models of value, (2) specific strategy and technology models and (3) growth models implicit in the life-cycle of the technology underlying the business model of the family of business models.

The blog post thus briefly covers five main questions:

  1. Why is the price of cobalt suddenly surging like it is?
  2. Why is the price development of cobalt important for Finland?
  3. Why might the cobalt market impose challenges for sustainable transition?
  4. Why does the cobalt market have geopolitical implications?
  5. How can we assess future implications of this issue?

The aim of the post here is not so much to provide answers, but rather to develop insights and key questions for additional research, which we believe would be of interest for the Government, Finnish policymakers, Finnish businesses, industrial stakeholders and academics across a range of fields. We should present a strategic important question: What is the role of Finnish manufacturing in global value creation and production networks?

The price of cobalt as a proxy for demand for electric vehicles?

The main driver of the dramatic price surge is linked by market participants to rising demand for electric vehicles (EVs) (Financial Times, 2018; The Economist, 2018). In the EV-sector lithium-ion (Li-ion) batteries are the preferred battery technology due to it’s energy density (Zubi et al., 2018), with cobalt used for lithium metal oxides. 75% of the global cobalt consumption is going into the battery sector (Fröhlich et al, 2017). As demand for EV’s increase, so does the demand for batteries, and so does the demand for cobalt.

The price of cobalt might therefore be a telling proxy for the general optimism surrounding the business ecosystem of electric vehicles – and the surging price of cobalt can be seen as an indicator that the car and battery industries, at least, are now betting big on EV markets. Of course, this price analysis is not only price indicator trend analysis, we should perform in the context of global economy. However, this is an interesting strategic case example with broader importance. We need to pay more attention to the price monitoring system of strategic resources relevant for the Finnish manufacturing base and economy.

Possible research ideas: Market development and global uptake of electric vehicles; linkages between EV sales and global cobalt consumption, the price monitoring system of strategic resources relevant for the Finnish manufacturing base and economy. 

Finland and the cobalt industry

The largest cobalt refinery in the world is located in Kokkola, and Finland is the second largest producer of the refined cobalt in the world after China. Current (2017) Finnish production is at 12,200 tons of Cobalt per year (GTK, 2018). Finland is not a marginal player in this field of global manufacturing…

While a large majority of the cobalt used for refining is imported (thereby possibly limiting profits added by the price surge), the value of the refined cobalt outputs have increased remarkably. If each ton of refined cobalt is worth $70,000 more than two years ago, an annual production of 12,200 tonnes of refined cobalt is worth $850m more.

The surging price of cobalt alone therefore by itself lifts Finnish exports by as much as €0,5bn in 2018 compared to 2016.

There are current plans of mining for cobalt at Terraframe (formerly Talvivaara) and near Kuusamo, although the developments are not quite without issues (Terraframe, 2017; Yle, 2018; Lapin Kansa, 2018).

Through mining and refining of cobalt as well as through a number of other aspects, this growing battery manufacturing value chain might be a key value-producing network for the Finnish economy of the near future. We need proactive industrial and manufacturing policy platform based on private-public governance. One important idea behind this blog post is that we need a more proactive industrial policy in Finland.

It has indeed already been noted that Finland is well positioned for this growth market (Aamulehti, 2017; Business Finland, 2017), and this month  (April 2018), the Ministry of Economic Affairs launched a new program for Batteries for Finland 2018-2020 in order to strengthen this agenda further (Työ- ja elinkeinoministeriö, 2018). In addition to attracting new international mining investments, the plans aim at generating a higher value part of the battery manufacturing chain.

One important strategic aspect of economic trend research is that we can understand that relative advantages are variable dynamic factors. Therefore, they should be constantly monitored on the basis of global economic changes. Of course, prices changes are such factors.

Possible research ideas: Scenarios and a strategy architecture for Finnish cobalt mining and refining, Orchestration of the EV battery business ecosystem. 

Can lack of cobalt hinder a sustainable transition?

A sustainable global transition requires new technologies for energy production, transportation, etc. However, these new technologies are dependent on various metals, including cobalt. In 2016 Finnish researchers from VTT and the Geological Survey of Finland assessed this ‘Role of critical metals in the future markets of clean energy technologies’ in a peer-reviewed article (Grandell et al., 2016). Here availability of other metals (e.g. silver) is deemed even more critical, but for cobalt the researchers find that with assumptions of a global clean energy transformation, cumulative demand for cobalt for the period until 2050 can exceed known global resources by almost 200 pct.

In other words, positive scenarios for fast climate change action can be challenged by the lack of minerals. If the world transitions with the use of current technologies, there might simply not be enough cobalt available for the job.

It is not without reason that a recent published study concluded that “Cobalt, however, is a reason for major concerns in the Li-ion battery sector” (Zubi et al., 2018).

Possible research ideas: Critical metals as possible limiting factors for cleantech-technologies; Designing optimal policies for reducing dependence on critical metal; Substitutionality of critical metals in various technological fields.

Why does the cobalt market have geopolitical implications?

The main supplier of cobalt in the world is the Democratic Republic of Congo (DRC), which supplies more than 50% of the current global production of cobalt (Fröhlich et al., 2017). Having one dominant global supplier entails supply risks, increased by political and economic instability. In 1978, civil unrest in the DRC quickly increased the price of cobalt by 6.5 times (Bailey et al., 2017), the so called “Cobalt Crisis” (Shedd et al., 2017). Depending on the stability and development of the DRC, there might be concerns regarding continuous supply.

The second supply-related concern relates to the dominant position of China. A 2015-paper in Energy Policy stated that “Whereas experts in the minerals industry are mostly aware of China’s strong position, many stakeholders in and advocates for renewable technologies are not” (Stegen, 2015). This strong position certainly holds true for cobalt, leading to concerns of what might happen if China corners the cobalt market (The Economist, 2018). The Chinese company China Moly  was also in talks to take over Freeport Cobalt’s refinery in Kokkola, but the deal fell through in the summer of 2017 (Reuters, 2018).

If there is a global scarcity of certain minerals, and if one nation holds the key to these minerals, it is easy to imagine the availability might have important geopolitical implications (cf. Øverland et al., 2017).

Possible research ideas: Security and geopolitical implications of mineral resources for clean energy technologies; black swans and resilience research.

What can we say about the future?

Like with any other raw material, the price and the criticality of cobalt hinges on supply and demand. In the terms of minerals these fundamental variables can meaningfully be subdivided into specific variables (adapted from Martin et al., 2017):

Fig. 2. Determinants of price and criticality of minerals (inspiration from Martin et al., 2017)

The supply of cobalt available for the market will be driven both by the amount of cobalt resources and reserves naturally available, by the amount of cobalt that is recycled, and by the amount of cobalt actually produced. The production supply will be a function of price and profitability, but other issues like social and environmental concerns might also affect production constraints, e.g. in Finnish mining projects.

Similarly, demand for cobalt will be a function of the demand for technologies using cobalt, but also shaped by the technical and economic feasibility of using alternative raw materials or using alternative technological solutions (ie. substitutionality).

A thorough foresight or technological forecast study should therefore consider each of these variables individually, in the case of Finland or even globally. Given the potentially major role of cobalt for sustainable transition, for global geopolitical concerns or ‘just’ for the economy of Finland, this would however be a very interesting endeavour to pursue.

Possible research ideas: Scenarios for global cobalt demand; Scenarios for Finland’s mining industry.

References and additional information

Mikkel Stein Knudsen
Project Researcher, Finland Futures Research Centre, Turku School of Economics, University of Turku

Jari Kaivo-oja
Research Director, Adjunct Professor, Dr, Finland Futures Research Centre, Turku School of Economics, University of Turku

This research work has been supported by the Finnish Strategic Research Council [grant number 313395]. The blog text refers to the preliminary foresight and background analyses of the Manufacturing 4.0 project.

Photo: Tesla,

Scenarios as Stairways to Resilient Futures

Sirkka Heinonen:

Scenario thinking, planning and construction occupy a core sphere in futures studies. Scenarios were among the first futures research methods that were developed and applied, first for strategic and military purposes, then for companies, regions, cities, communities and governments.  However, there’s more to the story than meets the eye. The full potential of scenarios as empowering tools is not yet discovered.

Scenarios are a pioneering futures studies method – true

Ever since the beginning of the field of futures research and studies in early 1950s, the scenario construction has been applied. The method was introduced in Dutch Shell and RAND companies, used and developed by such major actors as Pierre Wack and Herman Kahn,, as well as by Gaston Berger in France. Kahn borrowed the term “scenario” from the theatre world and drama – it consists of a stage, plot, actors, sequence of action, for military and strategic purposes. Vuokko Jarva (2018) even developed a specific scenario drama method – scenarizing in dialogue – where the narrative is first and foremost a means of communication and aims at collective mobilization.

Through scenarios we can embrace uncertainties – true

Eleonora Masini (1993) takes scenarios as educational and informative policy tools – as “instruments which aid decision-makers by providing a context for planning and programming, lowering the level of uncertainty and raising the level of knowledge”. Vervoort et al. (2015, 62-63) perceive scenarios within a “worldmaking framework” for envisioning and pursuing better worlds. They propose scenarios as “worlds”, instead of just narratives – and instead of reducing uncertainty, it should be embraced through diverse, contrasting futures. Scenarios and futures studies help us to navigate in the uncertain world. It is necessary to embrace even unpleasant alternatives – otherwise one is ill prepared and unable to react when something unexpected happens (Wilenius 2017).

Scenarios are an eye-opening mindset – true

I like the expression that scenarios are vivid manuscripts of the future. Moreover, coherent manuscripts of various, alternative futures. Scenario thinking means basically thinking in alternatives. It also means anticipatory thinking in very different ways, not just following linear trajectories. Scenarios have a generic role of opening up imagination when stepping into the futures – finding the right stairways to scenario “heavens”.  They also have a special role in paving the way to stakeholders to prepare themselves to tomorrow’s worlds, by giving support to decision-making. Scenarios are themselves comprehensive futures processes (not just a method) – resulting in subsequent policy recommendations and measures to be taken (please see Chapter 4 for the recommendations given on the basis of our recent Neo-Carbon Energy scenarios (Heinonen et al. 2017).

Scenarios come in various colours – true

Scenario is probably by far the most frequently used futures technique, at least the best known and developed one. For Sohail Inayatullah (2008, 15) scenarios are the “tool par excellence of futures studies”. They open up the present, outline the range of uncertainty, and offer alternatives. However, we all know there is no such thing as a single scenario method. Instead a scenario technique toolbox, full of various types of scenarios and scenario processes. For various typologies, see e.g. Van Notten et al. (2003). Scenarios can be explorative or normative. Proponents of different scenario types can also been classified as the positivist or “probability” camp and the constructivist or “plausibility” camp (Vervoort et al. 2015). Yet another two category set of scenarios is: quantitative or qualitative. A combination of both is recently being applied in many scenario projects, and we can also call them hybrid scenarios. Examples of two recent scenario sets are Shell’s New Lens Scenarios “Mountains and Oceans” and Millennium Project’s Global Future of Work/Technology 2050 Scenarios  (Glenn et al. 2017). A key point in using these kinds of scenarios is to investigate the scenario contents and narratives further. The three Millennium Project scenarios, for instance, can be reflected in national workshops to enquire what implications such scenarios would have in the national level. Consequently, the “users” of the scenarios can come up with relevant recommendations for necessary measures to be taken.

Dator (2009) claims that all scenarios that so far have been or ever will be made fall into one of the four scenario archetypes: growth, collapse, discipline, and transformation. In Our Neo-Carbon-Energy project we chose to construct all four scenarios – Radical start-ups, Value-driven Techemoths, Green D-I-Y Engineers, and New Consciousness as transformative. In Dator’s terms Transformation is the most radically changed future, going beyond the basic assumptions of the other three archetypes: transformation arising either through dramatic technological change or through spiritual change, and often through their combination. By choosing this category we wanted the scenarios to be used as eye-openers to reflect on the coming tsunamis of change. There are several specific characteristics and experimental features adopted in the construction of Neo-Carbon Energy scenarios. By nature they are all radical, but possible, and to a varying degree probable, even though the probability of any scenario ever being realized is “vanishingly small” as Gordon and Glenn (2018) remind us.

Scenarios are about re-framing – true

We wanted to reframe the question of how a future energy system might look like, since it is a key to transformation.  Ramírez and Wilkinson (2016, 218–219) accentuate the importance of reframing, which as an approach is similar to consideration of alternative imageries of futures. They see the conventional framing as “a lens, device, or type of filter that both includes and excludes”. The Neo-Carbon Energy scenarios reframe a) energy systems by describing a transformation in the energy system itself – from their current state to a 100% renewable and decentralised system – and b) a transformation in social relationships from the current state to relatively autonomous and self-sufficient peer-to-peer communities. In the scenarios, the renewable energy system has enabled and empowered these peer-to-peer communities.

These Neo-Carbon Energy scenarios have been presented and communicated in various platforms and events to make them understandable for users. An incremental participatory approach was adopted to open up the platform of scenario construction process to interaction with various stakeholders (Ernst et al. 2018). The scenarios were subjected to several types of testing:

  • The process of five futures cliniques conducted were a fruitful source for inputs, insights, and continuous feedback to the scenarios. The total of over 160 participants from different backgrounds attended these cliniques. (See e.g. Ruotsalainen et al. 2016).
  • The scenarios were being tested by running a CLA game on them (Heinonen et al. 2017d; Heinonen et al. 2015)
  • The scenarios were also “x-rayed” in various case countries through an international survey and workshops in order to contextualize them in different geo-political, socio-technical or socio-cultural conditions, and in order to identify pioneers for the depicted scenario futures. (Lang et al. 2016; Karjalainen & Heinonen 2017; Heinonen at al. 2017e; Heinonen at al. 2016b; Heinonen 2017)
  • The scenarios were also tested by “bombarding” them with black swans in the last of the five futures cliniques. The results were further deepened through a cross-impact analysis the day after the clinique in a small expert workshop (Heinonen et al. 2017b; 2017c).

Thus, new inputs and feedback were incrementally accumulated for and by the research team. Gordon & Glenn (2018) advocate these kind of interactive scenarios as becoming the mainstream in future scenario construction. The scenarios can be tested with various interactive techniques. Rowe et al. (2017) even propose differentiating scenario planning and horizon scanning methodologies, and enhancing the latter by utilizing pre-developed scenarios. Wright and Cairns (2011, 24) consider it a guiding principle in scenario construction that new ideas can be added at any stage of the process.  Our narratives were intentionally written as rather “open”, to leave room for diverse interpretations – as a challenge for users to exercise their imagination. According to Ramirez and Wilkinson (2016, 44) effective narratives are “open stories”, helping their readers to generate meaning while they use them.

Scenarios are like beehives – collectively and interactively constructed in fluent communication.

Scenarios launch a learning and communication process towards action – true

Making scenarios, reading them, and using them for policy-making is a learning process. They serve their purpose if they lead into action. Masini (2006, 1166) advocates us to “learn to live with the future” through systematic futures thinking, directed to visioning and consequent acting. Not passively adjusting to the future, but of steering it into the direction we responsibly choose. She sees futures projects as “political and ethical positions that lead to action”. In a similar vein, Gordon & Glenn (2018) judge the best scenarios as describing plausible means for improvement and eliminating roadblocks to a desirable future, by providing better understanding of future risks and uncertainties.

Ringland (1998, 190) considers scenarios as a good management tool for creating novelty, i.e. new ideas and identifying opportunities presented by the new environment – as in the case of the Neo-Carbon Energy scenarios, novelty is the new energy infrastructure. She emphasizes the importance of communicating the scenarios in order to engage the individual or group. “Thinking inside” the scenarios cannot start before such communication. It is only by working with the scenarios that learning becomes possible. Accordingly, creating models of the future – scenarios – and trying to understand and experience them from inside is a “way of rehearsing change” (ibid., 49). Masini (2006, 1166) calls for rethinking futures studies – the whole field must according to her turn into “acting for the future”.

The value of scenarios is in their usability – true

Their value is embedded in their emancipatory power, usability and influence. Then again, the desirability and usability of scenarios may vary hugely according to the stakeholders’ interests and views – whose futures? Whose scenarios? There’s a lot to do regarding how we can not only construct, but also use scenarios. At their best, scenarios function as versatile testbeds, to be used for “futures reality checking” in light of organizational strategies (Van der Heijden 2005, 118). Our view of scenarios in Neo-Carbon Energy project displays them as alternative ways of imagining the futures as part of futures literacy.  The core aim and benefit of scenarios is futures preparedness – systematic and open futures capacity building. Riel Miller’s (2007, 343) concept of futures literacy encourages us to use the potential of the present more effectively, to develop the capacity for more imaginative storytelling required for scenarios  in order to realise our aspirations. More efforts could, however, be made to perceive scenarios as integral instruments for serious but transformative futures preparedness and mobilizing futures emancipation. The end result will be futures resilience – capacity to survive and even succeed in turbulent futures through collective learning-based futures literacy and action-orientated futures consciousness.

Sirkka Heinonen

The author is Professor in Futures Research and teaches in the Master’s Programme of Futures Studies at Turku School of Economics, University of Turku.


Dator, Jim (2009) “Alternative Futures at the Manoa School” Journal of Futures Studies. Vol14 (2), 1-18.

Ernst, Anna – Biss, Klaus H. – Shamon, Hawal – Schumann, Diana & Heinrichs, Heidi U (2018) Benefits and challenges of participatory methods in qualitative energy scenario development. Technological Forecasting & Social Change 127 (2018) 245–257.

Glenn, Jerome – Florescu, Elizabeth & the Millennium Project Team (2017) State of the Future 19.0. Millennium Project. Washington D.C.

Gordon, Theodore & Glenn, Jerome (2018) Interactive scenarios. In: Sokele, Mladen & Moutinho, Luiz Abel (eds) Innovative Research Methodologies in Management. Forthcoming.

Heinonen, Sirkka (2017) Pioneer analysis and international cultural changes. Application of positrend and negatrend analysis in the identification of cultural change. In: Heinonen, S. – Kuusi, O. & Salminen, H. (eds) How do we explore futures? ACTA FUTURA FENNICA nro 10, Helsinki, p. 241–251.

Heinonen, Sirkka – Honkapuro, Samuli – Karjalainen, Joni – Koljonen, Tiina – Ruotsalainen, Juho & Similä, Lassi (2017) Final Neo-Carbon Energy Countdown – Ready for Renewables. Finland Futures Research Centre FFRC eBook 11/2017.

Heinonen, Sirkka – Karjalainen, Joni – Parkkinen, Marjukka – Ruotsalainen, Juho & Zavialova, Sofia (2017b) Surprising Energy Futures. Neo-Carbon Energy Futures Clinique V. FFRC eBOOK 4/2017, Finland Futures Research Centre, University of Turku. 150 p.

Heinonen, S. – Karjalainen, J. – Ruotsalainen, J. & Steinmüller, K. (2017c) Surprise as the New Normal – Implications for Energy Security. European Journal of Futures Research (2017) 5: 12.

Heinonen, Sirkka – Minkkinen, Matti – Karjalainen, Joni & Inayatullah, Sohail (2017d) Testing transformative energy scenarios through causal layered analysis gam ing, Technological Forecasting and Social Change 124: 101-113,

Heinonen, Sirkka – Vähäkari, Noora & Karjalainen, Joni (2017e) Neo-Carbon Energy World – What Opportunities for Chile? Neo-Carbon Energy Futures Clinique IV.  FFRC eBOOK 3/2017, Finland Futures Research Centre, University of Turku. 63 p.

Heinonen, Sirkka – Karjalainen, Joni & Ruotsalainen, Juho (2016) Radical Transformation in a Distributed Society – Neo-Carbon Energy Scenarios 2050. NEO-CARBON ENERGY WP1 Working Paper 1/2016. Finland Futures Research Centre, 84 p.

Heinonen, Sirkka – Karjalainen, Joni – Helle, Aino & Nisula, Sakari (2016b) Argentinian Energy Landscapes. Case study of the Neo-Carbon Energy Project. Finland Futures Research Centre eBook 12/2016.

Heinonen, Sirkka – Balcom Raleigh, Nicolas – Karjalainen, Joni – Minkkinen, Matti – Parkkinen, Marjukka & Ruotsalainen, Juho (2015) CLA GAME REPORT: Causal Layered Analysis Game on Neo-Carbon Energy Scenarios. FFRC eBOOK 12/2015. Finland Futures Research Centre, University of Turku. 112 p.

Van Der Heijden, Kees (2005) Scenarios: The art of strategic conversation. Chichester, John Wiley & Sons.

Inayatullah, Sohail (2009) Questioning scenarios. Journal of Futures Studies, Febr. 2009, 13 (3): 75–80.

Jarva, Vuokko (2017) Scenarizing in Dialogue. In: Heinonen, Sirkka, Kuusi, Osmo & Salminen, Hazel (eds.) (2017). How Do We Explore Our Futures? Acta Futura Fennica 10. Finnish Society for Futures Studies, Helsinki, 156–171.

Karjalainen, Joni & Heinonen, Sirkka (2017) Using deliberative foresight to envision a neo-carbon energy innovation ecosystem – a case study of Kenya. African Journal of Science, Technology, Innovation and Development, p. 1–17, DOI: 10.1080/20421338.2017.1366133. ISSN 2042-1338

Lang, Merja – Karjalainen, Joni & Heinonen, Sirkka (2016) Glocal Insights to Neo-Carbon Energy and Its Forerunners. Neo-Carbon Energy WP1 Working Paper 4/2016. Finland Futures Research Centre, 112 p.

Masini, Eleonora (2006) Rethinking futures studies. Futures 38 (2006) 1158–1168.

Masini, Eleonora (1993) Why Future Studies? London, Grey Seal Books.

Miller, Riel (2007) Futures literacy: A hybrid strategic scenario method. Futures 39 (2007), 341–362.

Ramirez, Rafael & Wilkinson, Angela (2016) Strategic Reframing. The Oxford Scenario Planning Approach. Oxford.

Ringland, Gill (1998) Scenario Planning. Managing for the Futures. Chichester.

Ruotsalainen, Juho – Karjalainen, Joni – Child, Michael & Heinonen, Sirkka (2017) Culture, values, lifestyles, and power in energy futures: A critical peer-to-peer vision for renewable energy. Energy Research & Social Science 34 (2017), 231–239.

Ruotsalainen, Juho – Heinonen, Sirkka – Karjalainen, Joni & Parkkinen, Marjukka (2016) Peer-to-peer work in the digital meaning society 2050. European Journal of Futures Research 4(10).

Shell energy scenarios to 2050. Signals & Signposts. 

Wilenius, Markku (2017) Patterns of the future. Understanding the Next Wave of Global Change. World Scientific Publishing Europe. London.

Wright, George & Cairns, George (2011) Scenario Thinking. Practical Approaches to the Future. New York, 176 p.


Photos: Sirkka Heinonen

Kilpailu liiketoimintaympäristön laadun kehittämisestä on kiristynyt Itämeren alueella

Jari Kaivo-oja:

Maailmanpankin Ease of Doing Business -trendianalyysi vuosilta 2004–2018 Itämeren alueella

Tässä blogiviestissä tarkastelen Maailmanpankin (2018) julkaiseman Ease of Doing Business -indeksin pohjalta liiketoimintaympäristöjen kehittymistä Itämeren maissa. Tarkastelu kattaa Pohjoismaat, Baltian maat, Puolan ja Saksan.

Ease of Doing Business- kuvaa liiketoimintaympäristön houkuttelevuutta eri maissa ja eri alueilla. Nykyään tämä indeksi on laskettu 130 kansantaloudelle maailmassa. Eri maat pyrkivät yleensä kehittämään omaa liiketoimintaympäristöään mahdollisimman houkuttelevaksi ja kiinnostavaksi yrityksille. Ease of Doing Business on professori Simeon Djankovin Maailmanpankki-ryhmässä kehittelemä indeksi, joka kuvaa liiketoimintaympäristön laatua suhteessa yrittäjien keskeisiin tarpeisiin. Akateeminen tutkimus tämän indeksin kehittelyn yhteydessä tehtiin yhdessä Harvardin yliopiston professoreiden Oliver Hartin ja Andrei Shleiferin toimesta. Kuten hyvin Suomessa tiedämme, professori Oliver Hart vastaanotti Nobel-palkinnon yhdessä Bengt Holmströmin kanssa vuonna 2017. Harvardin professori Andrei Shleifer on taas maailman eniten siteerattu taloustieteilijä maailmassa. Hänen h-indeksinsä on 136 ja hänen i-10-indeksi on 272 eli kukaan muu ekonomisti ei ole saavuttanut vastaavan tasoista viittausten määrää. Häntä oli siteerattu huhtikuun 2018 alussa 261 229 kertaa. Häntä siteerataan nykyisin yleensä yli 19 000 kertaa vuodessa.  Meillä on siis varsin hyviä syitä nojautua heidän työnsä tuloksiin myös tulevaisuudentutkimuksen alalla, kun teemme trendianalyysejä talouskehityksen perustekijöistä maailmantaloudessa.

Korkeammat Ease of Do Business -indeksin ranking-arvot osoittavat parempia, yleensä yksinkertaisempia säännöksiä yrityksille ja voimakkaampia suojaoikeuksia yrittäjille. Jo Nobel-palkinnon saada, edesmennyt Douglas North, 1981, 1992, ks. Ménard & Shirley 2011) toi esille lukuisissa tutkimuksissaan sen, että institutionaalisilla säädöksillä on oma merkityksensä talouskehitykselle. Samoja asioita ovat korostanee sopimusteoreettisestä näkökulmasta myös professorit Oliver Hart ja Bengt Holmström. Mielenkiintoista on, että esimerkiksi viimeisimpien tilastoanalyysiin pohjautuvien tutkimusarvioiden mukaan yritysten laadukas toimintasääntely johtaa alempaan kansalaisten köyhyystasoon kansantaloudessa. Tätäkin asiaa voidaan arvioida tilastollisten tunnuslukujen perusteella. Ei ole siis täysin yhdentekevää, miten EDB-indeksit kehittyvät maailmantaloudessa.

EDB-indeksin laskennassa otetaan huomioon seuraavat asiakokonaisuudet (10 eri asiakohtaa):

  • Yrityksen aloittaminen: Menettelyt, aika, kustannukset ja vähimmäispääoma uuden yrityksen avaamiseksi
  • Rakennuslupien käsittely: Varastotilojen rakentaminen, aika ja kustannukset
  • Sähköenergian saanti: Menettelyt, aika ja kustannukset, jotka yritykseltä edellytetään saadakseen pysyvän sähköyhteyden äskettäin rakennetulle varastolle
  • Kiinteistön rekisteröinti: Kiinteistöjen rekisteröintiä koskevat menettelyt, aika ja kustannukset
  • Lainoitus: Laillisten oikeuksien indeksi, luottotietoindeksin kattavuus
  • Vähemmistöosakkaiden ja sijoittajien suojaaminen: vastuiden laajuus, ohjaajavastuun laajuus ja osakkeenomistajien oikeudet
  • Verojen maksaminen: Maksettujen verojen määrä, tuntirahat, jotka on käytetty valmistellessaan veroilmoituksia ja kokonaisvero, joka maksetaan osuutena bruttovoitosta
  • Kauppa rajojen yli: Tarvittavien asiakirjojen määrä, viennin ja tuonnin kustannukset ja tarvittava aika
  • Sopimusten täytäntöönpano: Velkasopimuksen täytäntöönpanoa koskevat menettelyt, aika ja kustannukset
  • Maksukyvyttömyystilanteet: Aika, kustannukset ja takaisinperintäaste (%) konkurssimenettelyssä.

Liiketoimintatutkimuksen alalla EDB-indeksi on eräs keskeinen työkalu arvioida liiketoiminnan aloittamisen helppoutta maailmassa. Sitä on käytetty referoiduissa tutkimuksissa yli 3000 kertaa. Voidaan todeta, että juuri tämä indeksi on hyödyllinen työkalu arvioitaessa sitä, miten houkutteleva kunkin maan liiketoimintaympäristö todellisuudessa on. Maailmanpankin tutkimukset osoittavat, että EDB-indeksin korkeampi taso ja näin sen laskennassa taustalla olevat lukuisat eri muuttujat yhdessä parantavat ja edistävät talouskasvua kansantaloudessa. Tässä on hyvä syy seurata EDB-indeksin kehitystä.

Tässä blogissa on tarkastelussa indeksien arvot vuosilta 2004–2018. Tämä Maailmanpankin perusaineisto tarjoaa mahdollisuuden vertailla Itämeren alueen liiketoimintaympäristöjen viime aikaista kehitystä.

Tämän esityksen liitteessä olen raportoinut kaikille tarkastelluille Itämeren maille EDB-indeksin ja BKT-indeksin (nykyhinnoin) kehityksen vuosina 2004–2017 (ks. Kuvat 7.1–7.10). Tästä blogiliitteestä voimme nähdä sen, että BKT:n kehitys ja EDB-indeksin kehitys on pääsääntöisesti positiivisesti korreloitunutta keskenään Itämeren eri maissa. Ainoan poikkeuksen muodosti tässä perusdata-analyyssä Islanti, mutta poistamalla Islannin syvien lamavuosien tilastohavainnot olisi näiden muuttujien suhde myös positiivisesti korreloitunut Islannissa. Tietyllä tavalla nämä korrelaatiot antavat hyvän syyn kiinnittää huomiota EDB-pohjaiseen liiketoimintaympäristön kehittämiseen.

Tässä blogiviestissä arvioin yleisesti sitä, miten houkuttelevaksi eri maat ovat kehittäneet omaa liiketoimintaympäristöään. Ease of Doing Business -indikaattori on varsin monipuoliseen tietoon pohjautuva indeksi. Kuvassa 1 on esitetty EDB-indeksin kehitys Suomen osalta vuosina 2004–2018.

Kuva 1. Ease of Doing Business- indeksin kehitys Suomessa vuosina 2004–2018. (Maailmanpankki 2018).

Kuva 1 kertoo siitä, että Suomessa on onnistuttu parantamaan liiketoimintaympäristön houkuttelevuutta erityisesti vuosina 2004–2006 ja myös vuosina 2007–2008. Vuoden 2008 jälkeen kehitys on ollut vakaata ja EDB-indeksi arvo on ollut noin 93.

Kuvassa 2 on kuvattu kaikkien Pohjoismaiden Ease of Doing Business- indeksin kehitys vuosina 2004–2018. Yleinen havainto on tämän kuvan perusteella se, että kaikki Pohjoismaat ovat kyenneet parantamaan liiketoimintaympäristönsä houkuttelevuutta vuosina 2004–2018. Edellytykset talouskasvulle ovat siis kohentuneet yleisesti arvioiden.

Kuva 2. Ease of Doing Business- indeksin kehitys Pohjoismaissa vuosina 2004–2018. (Maailmanpankki 2018).

Islannissa EDB-indeksin arvo on jäänyt alhaisimmalle tasolle, kun taas Ruotsi ja Norja ovat onnistuneet parhaiten kehittämään omien liiketoimintaympäristöjen houkuttelevuutta. Tällä hetkellä Ruotsi on kärkimaa liiketoimintaympäristön houkuttelevuudessa, kun asiaa arvioidaan EDB-indeksin pohjalta. Suomen on sijalla kolme. Olemme Suomessa polkeneet aika lailla paikalla tämän indeksikehityksen osalta vuodesta 2008 lähtien. Olemme silti Pohjoismaissa hiukan houkuttelevampi ja vetovoimaisempi liiketoimintaympäristö kuin Tanska tai Islanti.

Kuvassa 3 on raportoitu EDB-indeksien kehitys Baltian maissa. Kuva 3 kertoo selvästi sen, että toimintaympäristön kehitys Baltian maissa on aika lailla samalla tasolla jokaisessa Baltian maissa ja maiden väliset erot ovat todella pieniä. EDB- indeksillä arvioituna maiden järjestys on: Viro, Latvia ja Liettua. Suhteellisesti arvioituna eniten maan liiketoimintaympäristön houkuttelevuutta on kyennyt parantamaan Liettua.

Kuva 3. Ease of Doing Business- indeksin kehitys Baltian maissa vuosina 2004–2018. (Maailmanpankki 2018).

Virossa EDB-indeksin arvo on hieman yli 95, Liettuassa se on hieman yli 94 ja Latviassa se on hieman yli 93. EDB-indeksillä arvioituna Viron ja Liettuan liiketoimintaympäristö on asteen verran vetovoimaisempi kuin Suomen liiketoimintaympäristö.

Kuvassa 4 on raportoitu Saksan ja Puolan EDB-indeksikehitys vuosina 2004–2018. Kuva kertoo siitä, että Puolassa on kyetty kohentamaan liiketoimintaympäristön houkuttelevuutta paljon siitä, mitä se oli vuonna 2004. Hyppäys kehityksessä tapahtui vuosina 2009–2010. Puolan EDB-indeksi on nyt jotakuinkin samalla tasolla kuin Saksassa.

Kuva 4. Ease of Doing Business- indeksin kehitys Saksassa ja Puolassa vuosina 2004–2018. (Maailmanpankki 2018).

Kuvassa 5 olen laskenut kaikkien tässä tarkastelussa mukana olleiden maiden EDB-indeksien varianssi. Varianssi on koko tarkasteluajanjakson aikana pienentynyt eli keskinäiset erot Itämeren maiden EDB-indeksin arvossa ovat vähentyneet. Tämä selvä tulos kertoo siitä, että maiden keskinäinen kilpailu liiketoimintaympäristöjen välillä Itämeren alueella on koventunut ja maiden aikaisemmat erot liiketoimintaympäristöjen välillä ovat kaventuneet.

Kuva 5. Ease of Doing Business- indeksien maakohtaisen varianssin kehitys vuosina 2004–2018. (Maailmanpankki 2018).

Voimme todeta, että Itämeren alueen maiden osalta kilpailu liiketoimintaympäristön laadun kehittämisen osalta on kiristynyt. Erot liiketoimintaympäristön laadun osalta Itämeren maissa eivät ole enää niin isoja kuin ne olivat vielä vuonna 2004. Silloin Baltian maat olivat vielä selvästi jäljessä Pohjoismaita liiketoimintaympäristön laadun osalta. Tämä on hyvä tiedostaa Suomessakin. Nyt tilanne on tyystin erilainen.

Kuten kuva 5 osoittaa meille, iso muutos toimintaympäristössä tapahtui vuosina 2009–2010. Tämän jälkeen tilanne on muuttunut maiden välisten erojen osalta vain vähän. Merkittävin muutos on tapahtunut Puolan liiketoimintaympäristön houkuttelevuudessa, jossa tänään liiketoimintaympäristön houkuttelevuus on jotakuinkin samalla tasolla kuin Saksassa. Muutos vuodesta 2004 on ollut varsin huomattava. Baltian maissa liiketoimintaympäristön houkuttelevuus on tänään huomattavasti paremmalla tasolla kuin Puolassa tai Saksassa, kun sitä arvioidaan EDB-indeksin pohjalta. Pohjoismaissa houkuttelevin liiketoimintaympäristö on tällä hetkellä Ruotsissa.

Ilman uusia kehittämistoimenpiteitä Suomen liiketoimintaympäristön houkuttelevuus voi olla pian heikompi kuin missään Baltian maassa. Nyt Viro ja Latvia ovat jo ohittaneet Suomen, kun asiaa arvioidaan EDB-indeksikehityksen pohjalta. Liettuan viimeisin laskettu EDB-arvo oli 93.05 kun Suomessa se oli 93.15. Ero on siis vain hiuksen hieno Suomen hyväksi.

On selvää, että EDB-indeksin arvon vähäinenkin parantaminen on nykytilanteessa erittäin haasteellista. Suomen kohdalla liiketoimintaympäristön houkuttelevuutta voidaan varmasti parantaa arvioimalla systemaattisesti tapahtunutta kehitystä muissa maissa ja pohtimalla mahdollisuuksia parantaa houkuttelevuutta eri vaihtoehtoisissa tarkasteluissa. Voimme myös imitoida meitä parempia maita, kuten Uusi-Seelanti, Hong Kong, Etelä-Korea, Singapore, Iso-Britannia tai Yhdysvallat – tai ehkä kenties keksiä entistä parempia uusia yrittäjyyspalveluita. Viimeisimmässä EDB-arvioinnissa Suomi oli sijalla 13. Ennen Suomea on tällä hetkellä 12 maata. Jokaiselta näistä meitä edellä olevista maista voimme aina oppia jotakin uuttakin. Suomessa kannattaisi varmasti tarkastella kärkisijalla olevan Uuden-Seelannin EDB-toimintamalleja tarkemmin (ks. Kuva 6). Vuosina 2008–2009 Uudessa Seelannissa tehtiin jotain sellaista, mitä Suomessa kannattaisi analysoida hyvin huolellisesti. Vielä vuonna 2008 Suomi oli aika lähellä Uuden-Seelannin EDB-tilaa.

Kuva 6. Suomi vs. Uusi-Seelanti, Easy of Doing Business, vuodet 2004–2018 (Maailmanpankki 2018)

Kuten tästä blogiviestistä käy ilmi, EDB-indeksi perustuu kymmeneen eri asiakokonaisuuteen. Mahdolliset parannukset olisi hyvä suunnata huolellisen strategisen kustannus-hyöty -punninnan jälkeen valikoidusti näihin kymmeneen eri asiakokonaisuuteen. Kuten tiedämme, asiat ovat usein sellaisia, miltä ne ulkopuolisille näyttävät. Näin ne ovat etenkin sellaisissa datapohjaisissa trendianalyyseissä, jotka perustuvat taloustieteelliseen perustutkimukseen.

Jari Kaivo-oja
Tutkimusjohtaja, dosentti, HTT, YTM, Tulevaisuuden tutkimuskeskus, Turun kauppakorkeakoulu, Turun yliopisto

Tätä tutkimustyötä ovat tukeneet Suomen strategisen tutkimuksen neuvosto [avustusnumero 313395]. Teksti liittyy Valmistus 4.0 -hankkeen alustaviin ennakointi- ja tausta-analyyseihin.


Djankov, Simeon (2009) The Regulation of Entry: A Survey. The World Bank Research Observer, Vol. 24(2), s. 183–203.

Djankov, Simeon (2016) The Doing Business Project: How It Started: Correspondence. Journal of Economic Perspectives, 30(1), s. 247–48.

Djankov, Simeon, La Porta, Rafael, Lopez-De-Silanes, Florencio, Shleifer, Andrei (2002) The Regulation of Entry, The Quarterly Journal of Economics, Vol. CXVII, Issue I, s. 1–36.

Djankov, Simeon, Dorina Georgieva, Dorina & Ramalho, Rita (2017) Business Regulations and Poverty. 

Dollar, David, Kleineberg Tatjana & Kraay, Aart (2016) Growth still is good for the poor. European Economic Review. 81(1), s. 68–85.

Eurostat (2018) Current prices, million euro. Gross domestic product at market prices.

Glaeser, Edward L., La Porta, Rafael, Lopez-de-Silanes, Florencio  & Shleifer, Andrei (2004) Do institutions cause growth? Journal of Economic Growth Vol. 9, Issue 3, s. 271–303.

Ménard, Claude & Shirley, Mary M. (2011) The Contribution of Douglass North to New Institutional Economics. Published in Economic Institutions, Rights, Growth, and Sustainability: The Legacy of Douglass North. Cambridge University Press: Cambridge.  

North, Douglas C. (1981) Structure and Change in Economic History. W. W. Norton & Co, New York.

North, Douglas C. (1992) Transaction Costs, Institutions, and Economic Performance. ICS Press, San Francisco, CA.

Shleifer, Andrei & Vishny, Robert W. (1994) Politicians and firms. Quarterly Journal of Economics, Vol. 109, Issue 4, s. 995–1025

World Bank (2018) DB18. Historical data – Complete data. Doing Business. Database.

The World Bank (2018) Doing Business. Measuring Business Regulations. 

The World Bank Group (2018) Comparing Business Regulation for Domestic Firms in 190 Economies.  


Liite 1: EDB-indeksi ja BKT:n relaatio vuosina 2004–2017 Itämeren maissa. Kuvat 7.1–7.10.



Finland Futures Research Centre's Blog